

The Measurement of Q' by Head-Tail Phase Shift Analysis

BNL2002

Rhodri Jones (CERN - SL/BI) Stephane Fartoukh (CERN - SL/AP)

Outline

- Motivation
- The Head-Tail measurement principle
- The Head-Tail monitor of the SPS (2000)
- Improvements & Developments in 2001/2002
- Simulations and Robustness Study for LHC
- Conclusions

Motivation

- Problems with existing methods for Q' measurement
 - → Variation of Beam Momentum and Tune Tracking
 - LHC momentum acceptance small
 - tight tolerances on betatron tune
 - → Amplitude of synchrotron side-bands
 - Qs too low to distinguish side-bands from main tune peak
 - affected by resonant behaviour not linked to Q'
 - → Width of betatron tune peak
 - requires knowledge of $\Delta p/p$
 - affected by other sources of damping/decoherence.
 - ⇒ Test new "Head-Tail" technique in the CERN-SPS

• The Principle:

- → Apply single transverse kick and observe resulting betatron motion.
- → Chromaticity will determine the pattern of this motion.
- → By following the time evolution of any two positions within the bunch a phase-difference is obtained from which the chromaticity can be calculated.

Assumptions used in the Theory:

- → The displacement due to the kick is much larger than the betatron oscillations performed by the particles in the unperturbed bunch.
 - i.e. when the kick is applied all particles are assumed to have the same betatron phase.
- → The synchrotron frequency is the same for all particles in the bunch.
 - This assumption holds as long as the measurements are performed close to the centre of the bunch.
- → The presence of higher order fields such as octupolar fields are not taken into consideration.

Response for Zero Chromaticity

 Δ Signal - Transverse Bunch Position

Response for Non-Zero Chromaticity

The phase difference as a function of the number of turns from an initial kick is given by

$$\Delta \psi(n) = -\omega_{\xi} \Delta \tau \left(\cos(2\pi n Q_s) - 1 \right)$$

where ω_{ξ} is the chromatic frequency and is defined as $\omega_{\xi} = Q_0 \omega_0 \frac{\xi}{\eta}$

The maximum phase shift is obtained after half a synchrotron period, when $nQ_s = \frac{1}{2}$

$$\Delta \psi_{MAX} \; = - \, 2 \omega_{\xi} \; \Delta \tau$$

The relative chromaticity can therefore be written as

$$\xi = \frac{-\eta \ \Delta \psi(n)}{Q_0 \ \omega_0 \Delta \tau \left(\cos(2\pi n Q_s) - 1\right)} = \frac{\eta \ \Delta \psi_{MAX}}{2 \ Q_0 \ \omega_0 \ \Delta \tau}$$

 ξ = relative chromaticity $\Delta \psi$ = head-tail phase difference $\Delta \tau$ = time between the sampling of head and tail Q_s = synchrotron tune Q_0 = betatron tune Q_0 = number of turns since the initial kick

CERN-SPS System Set-up

The CERN-SPS Head-Tail Monitor

Pick-up

- Straight stripline coupler 37cm long
 - → completely resolves a bunch < 2.5ns in length
 - NOT the case in the CERN-SPS where bunch length is ~4ns

BNL2002 - Rhodri Jones (CERN - SL/BI)

Measurements Conditions

- Measurements performed during CERN-SPS "25ns Run"
 - → LHC batch of 84 bunches with 25ns bunch spacing
 - → Acceleration from 26GeV to 450GeV
 - \rightarrow Intensity of $\sim 2 \times 10^{10}$ protons per bunch

- Q' measured mainly in the vertical plane
 - → Transverse Damper switched OFF in measurement plane
 - → Beam excited using a single kick from the Q-kickers

Measuring Q'

Measuring Q'

Measuring Q'

Measuring Q" and Q"

Multiple Q' Measurements

- Several Q' Measurements on SAME SPS elementary cycle
 - → rate limited to 0.5Hz by GPIB data transfer & scope reset time
 - → demonstrated on SPS using 3 Q-kickers

1000ms: 36GeV

$$\xi = 0.036$$

$$\xi = 0.037$$

$$\xi = 0.005$$

Improvements and Developments in 2001/2002

- Added 60cm long coupler
 - → can fully resolve bunches up to 4ns in length
- Added low loss cables & reduced cable length
 - → increase in the overall system bandwidth
- Performed more complete simulations
 - → originally intended to find source of missing factor
 - Turned out to be hardware related
 - → developed into a robustness study for the technique
 - Effect of accelerating buckets
 - Effect of Q" and Q"

Measuring Q' (long coupler)

Understanding the Scaling Factor

Signal Output

Signal Output

Effect of Deconvolving Cable Response

Effect of Sampling Rate

Simulations

Simulations

Tracking v Analytical Approach

Stationary Bucket:

- Measurement at Bunch Head w.r.t. Bunch Centre
- Comparison of tracking (solid lines) & analytical estimate (dashed)
- Error in ϕ_{MAX} negligible

(e): Betatron phase-shift [rad]

(f): Betatron phase-shift [rad]

Tracking Results

Stationary Bucket:

 Maximum phase shift reached is linear with distance from centre

Measurement is valid for:

- Centre to Head
- Centre to Tail
- Symmetric Head to Tail

Effect of Acceleration

Head & Centre

Symmetric Head & Tail

Centre & Tail

Effect of Acceleration

Effects of Acceleration (SPS Data)

Effect of Acceleration

Effects of Acceleration (SPS Data)

SPS Impedance Effects at Low Energy

Conclusions

Experimental

- → Operational Head-Tail Q'-Meas. system demonstrated
- → Technique also allows Q'' measurement
- → Chromaticity measurement demonstrated at 0.5Hz
- → Deconvolution required to remove perturbations due to hardware bandwidth limitations
- → Useful instrument for other applications
 - transverse instabilities
 - possible use for SPS impedance measurements

Theoretical

- → Method applicable for both stationary and accelerating buckets
 - Experimentally verified with the constraint that the measurement be performed symmetrically about the bunch centre
- → LHC robustness demonstrated for:
 - Non-linear chromaticity (Q" and Q")
 - Linear coupling (if arc-by-arc compensated as foreseen for LHC)
 - Impedance (by extrapolation from SPS to LHC)

BNL2002 - Rhodri Jones (CERN - SL/BI)